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Let X be a compact subset of the finite interval [«, 8]. For g € C(X) define
g1l = max{] g(x)|: x € X}.
Let H; be the set of polynomials of degree <{/. Let
R.MX)={plg:peH,,qe H,, g(x) > 0for xe X}.

Let s be an element of C(X), an ordinary (multiplicative) weight function.
Common choices in applications are s = 1 (absolute error), and (in case f
never vanishes) s = 1/f (relative error). The approximation problem is, given
fe C(X), minimize || s < (f — r)|] over r € R,(X). A minimizing r is called a
best approximation to fon X. We wish to find an (elegant and easily checked)
characterization of best approximations and whether they are unique.

In the case X is an interval, this problem has a well-known classical
solution in which best approximation is characterized by alternation of the
error s x{(f — ) [0, 55; 1, 163; 3; 5, 122]. For general X, the characterizations
of Cheney [1, 159-160] and the author [2, 201-202] hold, but are not easy
to apply.

To avoid trivial cases, we assume that X has at least n + m + 1 points
at which s does not vanish. There is no loss of generality in assuming that
s == 0 (otherwise replace s by | s |).

DErINITION.  Let p be a polynomial =£0. Then &p is the exact degree of p.

DerINITION. Letr = p/g € R,,"(X) be given. Let p’/q’ denote an equivalent
irreducible rational function (if p = 0. we set ¢' = 1). The degree of nonzero
plg, written p(p/q), is 1 4+ max{n -+ &q', m + &p'}. The degree of 0, p(0), is
n+ 1.
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We first prove a generalization of a result of de la Vallée-Poussin. It is
useful in showing that nearly alternating approximations are near best.

LemMa. Let [ = p(p/q). Let sx(f— plg)sgn(q’) alternate in sign on
1% e X3 © X, 3 < < xy. Then if vy = pojq, is a different element of
R:’l;n('x:.)ﬁ

max{s(x;) = | f(x;) — ro(x) i = 0..... 1}

> min{s(x;) x| fx) — #(x) i =0,.... .

Proof. Suppose not. Assume without joss of generality that ¢'(x ) f{x,) —
r{xg)) > 0. Then

4" (x)lro(xg) — rx] = 0

Muitiply the i-th inequality by ¢u(x;) g(x;) > 0. Let us write g(v} =
w{x;) ¢'(x,) so that sgn(w(x;)) = sgn(g'(x,)).
Define ¢ = pyg’ — p'q,: then we have

H(xg) = Polxo) q'(xg) — 1'(xp) golx) = O
1(xy) = polx)) q' () — p'(x)) gofx;) < O

f 15 alternately >0 and <0 on / + 1 consecutive points, hence s has / zeros,
counting double zeros twice. But 7 is a polynomial of degree at most / — :,
so we have a contradiction.

DermviTION. A function g € C(X) alternates ! times on X if there exisis
{xg e, ¥t C© X, xy < -+ < xy, such that

gl =gl

g(x;) = (—1)Y g(x)

i =0,..1

THEOREM. A4 necessary and sufficient condition that i = plg be best o fis
that s = (f — 1y sgnlq) alternate p(plq) times on X.

Proof. Sufficiency follows from the lemma preceding. Necessiry Let £
not be an approximant and r be best. Let

M) = {xis(x) * | Ax) — Hx) = s« {f— il
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By the bottom corollary of [2, 202], 0 is in the convex hull of {o(x) s(x) D(x):
xe M(@r) where o(x) = sgn( f(x) — r(x)) and D(x) = (0, ,..., 0;), where
0, ..., 0, is a basis for pQ — gP where P = H, and Q = H,,. By the
arguments of the lemma of Cheney [1, 162]/is p(p/g). Let w(x) be the product
of common factors of p and ¢. Then 0 is in the convex hull of

{o(x) s(x) w(x) D'(x): x € M(r)}

where
D(x) = (0;,..., 03} and {0; ,..., 07}

is a basis for p’Q - ¢'P. By the theorem of Caratheodory [1, 17] O is in the
convex hull of

{o(x) s(x) w(x) D'(x): xe Y7,

where Y is a subset of M(r) containing at most [/ 4+ 1 points. As p'Q — q'P
is a Haar subspace of dimension / [1, 162], ¥ has / 4 1 points. By the lemma
of Cheney [1, 74], osw must alternate in sign on Y. But sgn(w(x)) = sgn(g'(x))
for xe X.

If fis an approximant r, necessity of alternation is trivial.

Uniqueness follows from the theorem and preceding lemma. Alternately,
it can be deduced from Cheney’s unicity theorem [l, 164] and the arguments
of his lemma [I, 162].

The strong unicity theory of Cheney [1, 165] holds. Thus his corollary
[1, 166] applies when we replace R,"[a, b] by R,(X) in the case s > 0.

In case best r reduced to lowest terms has a denominator which is >0 on X,
s x{f — r) alternates p(r) times on X. In particular in the case best r is non-
degenerate, sx(f — r) alternates n -+ m + 1 times on X and the Remez
algorithm can be used.

Inthe case n = 0 or m = 0 or m = 1, ¢ is of constant sign on X, hence
we have alternation of s x (f — r) (r best) p(r) times on X. If m = 2 such may
not be the case.

ExampLeE, Let X be a closed subset of [—1, 1] not including zero. Let
n=1and m = 2 and

r(x) = p(x)[q(x) = x/x* = l/x = p'(x)[q'(x).

If sgn(x)(f — r) alternates p(p/g) = 1 + max{l + 1,2 + 0} =3 tlmes on X,
plq is best. Consider in particular the case ¢ = 0 and

(=) =r-=1)+e
S(—1/2)y = r(—1/2) — e
SU[2) = r1j2) — e
) =r(1) +e
[f(x) — r(x)| < e, otherwise.
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sgn{x) f — r) alternates three times on X but f — r alternates only two times
on X.

In [4] Lee and Roberts consider rational approximation on discrete V.
Their paper explicitly considers denominators >0 on X and gives an alter-
nation. theorem, which they attribute to Rivlin [35, p. 131], which is the
exact analogue of the classical result for intervals. A difficulty in applyin
the theorem: is that if we cancel common factors from numerator and
denominator, the reduced denominator may no longer be =-0 on ¥, as in the
preceding example. The preceding example and theory shows that the reduced
denominator ¢’ must be considered if we want an alternating characterization.
A check of Rivlin’s theory shows he assumed denominators >0 on [a, Sl

We sav that r (best) has standard alternation if f — r alternates p{r) times
on X.

It might be thought that for fixed f and for X sufficiently dense [l. 84}
in the interval, that standard alternation of the error of the best approxi-
mation will occur. Such is not necessarily the case.

2 Uu

Exampre.  We will show that there exists fe Ci—1, 1] and a seguence of
closed subsets {X,} — [—1, 1] such that the unique best approximation by
RMX,) on X, does not have standard alternation and has a gole in [—1. [ L
Let T; be the j-th Chebyshev polynomial on [—1, 1], defined in {{; 3] and
many other texts. T; alternates exactly j times on [—1, 1] with amplitude 1.
Let = be a fixed zero of T;, say the first one left of zero. Define

flx) = sgnlx — 2) T(x)
’; iA) Hik(x — 2)] = (x — o){[k(x — =)’]
={x: | flx) — ) <1 —1lk x¢ L—I. 11 ~(z— 2/k, = — 2/k).

Let fixed x e [—1, 1] be not equal to z or an extremum of 7 , then | f{x)! <1
For k sufficiently large, x ¢ (z — 2/k, z + 2/k). For k sufficiently large.

| ) — ) — ()] < L.

Hence for all & sufficiently large, x € X, . Let x be an extremum of 7. There
exists x, near x at which |f— r, ! attains 1 — i/k. We ciaim {x,] — x.
Suppose not, then we can assume without loss of generality that {x;} —
v == x. Then | f(¥)} < 1as T, has only j + 1 extrema on [—1. 1], and since
7, converges uniformly to zero on a neighborhood of 3, | f(x;) — mdxy) - L

This contradicts choice of x, . Let x;, = z + 2/k, then ,,(\fﬂ = 1,2 and since
S — 0, flx) — rilx) = 1/2. Hence xeX; and {5} —: Thus
{X,) > [—1, 1]. For x ¢ (z — z/k, z + 2[k), | r{x)} << 1/2 and for x not c]ase

to z, 1) is close to zero. From this and the fact that sgn(x — z) f{x) =
alternates j times on [—1, 1], it can be seen that sgn(x — =} f — r;) altsr;zate:,
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Jj times on X, with amplitude 1 — 1/k, hence by our characterization theorem,
ri is uniquely best in R;1(X;) to fon X, for j = 3. Now falternates exactly
j — 1 times on [—1, 1], from which it can be deduced by similar arguments
that f — r, alternates exactly j — 1 times on X3, . But for standard alternation,
at least three alternations of f— r, are required. Thus we do not have
standard alternation in the case j = 3.

The set X, of the example is infinite. It can be replaced by a finite set Y
containing the extrema of | f — r, | on X and with density 1/2% in X, .

The previous example is relevant to discretization, an important result
concerning which is Theorem 2 of [6]. The example shows that admissibility
on X = [—1, 1] of best approximations on {X,} — [—1, 1] need not hold
if we drop the representation hypothesis of that theorem.

The example can be extended to approximation by rationals of higher
degree. Consider approximation by R3#(X;): in this family r, is of degree
3+ 1 Select j >3+ i and the example goes through. For j =3 + i
we do not have standard alternation.
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